

Chemical Reactions and Equations During a chemical reaction, one or more new compounds are formed as a result of the rearrangement of atoms. $Reactants \longrightarrow Products$ Products Produc

Chemical Reactions and Equations Law of Mass Conservation: No atoms are gained or lost during any reaction. The number of times atoms appear before the arrow must be equal to the number of times they appear after the arrow.

Acid–Base Reactions

Acid

• A chemical that donates a hydrogen ion, H⁺

Base

• A chemical that accepts a hydrogen ion, H+

Salt: An ionic compound formed from the reaction of an acid and a base.							
Table 13.1 Acid-Base Reactions and Salts Formed							
Acid		Base		Salt		Water	
LICN	+	NaOH	\rightarrow	NaCN	+	H ₂ O	
HCN				KNO.	+	HO	
HCN HNO3	+	KOH	\rightarrow	KINO3	- T	1120	
HCN HNO3 2 HCl	++++	KOH Ca(OH) ₂	\rightarrow	$CaCl_2$	+	$2 H_2O$	

The pH Scale
pH is a measure of the concentration of
hydronium ions,
$$H_3O^+$$
.
 $pH = -\log [H_3O^+]$
For pure water:
 $pH = -\log (10^{-7})$
 $pH = -(-7)$
 $pH = 7$

The pH Scale pH = $-\log [H_3O^+]$

For acidic water pH < 7, for example: $pH = -\log (10^{-5})$ pH = - (-5)pH = 5 The pH Scale

 $pH = -\log \left[H_3O^+\right]$

For basic water pH > 7, for example: $pH = -\log (10^{-9})$ pH = - (-9)pH = 9

Bond	Bond Energy (kJ/mole)	Bond	Bond Energy (kJ/mole)
н—н	436	0-0	138
н-с	414	CI-CI	243
H-N	389	N-N	159
н-о	464	N=O	631
H-F	569	0=0	498
H-Cl	431	O = C	803
H-S	339	$N \equiv N$	946
C - C	347	$C \equiv C$	837

Entropy and Chemical Reactions

It is the natural tendency of energy to disperse from where it is concentrated to where it is dilute.

Examples

A hot pan radiates heat Gasoline combusts into smaller molecules Marbles bouncing on the floor come to a stop

Entropy and Chemical Reactions

• Exothermic reactions tend to be self-sustaining because they lead to large increases in entropy.

Example: A campfire

• Endothermic reactions tend to require the continual input of energy.

Example: Photosynthesis

on Education, Inc., publishing as Pearson Addis