## Hewitt/Lyons/Suchocki/Yeh Conceptual Integrated Science

Chapter 9 THE ATOM

# The Elements

#### Atoms:

- make up all matter around us
- to date, 115 distinct kinds of atoms
- made up of protons, neutrons and electrons

#### Element:

any material consisting of only one type of atom



#### Atoms Are Ancient, Tiny, and Empty

- Ancient the origin of most atoms goes back to birth of universe
- tiny even a small amount of substance contains billions upon billions of atoms
- mostly empty space (football field analogy)





## Protons and Neutrons

Neutrons:

- accompany protons in the nucleus
- have about the same mass as protons but no charge, so are electrically neutral

Both protons and neutrons are nucleons.





### Isotopes and Atomic Mass

Atomic mass:

total mass of the atom [protons, neutrons, and electrons]

One atomic mass unit is equal to 1.661  $\times$  10^{-24} gram or 1.661  $\times$  10^{-27} kg











# The Quantum Hypothesis

Max Planck, a German physicist, hypothesized that warm bodies emit radiant energy in discrete bundles called *quanta*.

Energy is proportional to the frequency of radiation.

Albert Einstein stated that light itself is quantized and consists of a stream of energy bundles called *photons*.

# The Quantum Hypothesis

Is light a wave, or a stream of particles?

Light can be described by both models - it exhibits properties of both a wave or a particle, depending on the experiment.

The amount of energy in a photon is directly proportional to the frequency of light:  $E \sim f$ 

### The Quantum Hypothesis

Danish physicist Niels Bohr explained the formation of atomic spectra as follows:

- 1. The potential energy of an electron depends on its distance from the nucleus.
- 2. When an atom absorbs a photon of light, it absorbs energy.
- 3. When an electron in any energy level drops closer to the nucleus, it emits a photon of light.

# The Quantum Hypothesis

Bohr reasoned that there must be a number of distinct energy levels within the atom.

Each energy level has a principal quantum number n, where n is always an integer. The lowest level is n = 1 and is closest to the nucleus.

Electrons release energy in discrete amounts that form discrete lines in the atom's spectrum.

## The Quantum Hypothesis

Bohr's model explains why atoms don't collapse:

- Electrons can lose only specific amounts of energy equivalent to transitions between levels.
- An atom reaches the lowest energy level called the ground state, where the electron can't lose more energy and can't move closer to the nucleus.

## **Electron Waves**

An electron's wave nature explains why electrons in an atom are restricted to particular energy levels.

The orbit for n = 1 consists of a single wavelength, n = 2 is of two wavelengths, and so on.



#### Probability Clouds and Atomic Orbitals

- Erwin Schrödinger, Austrian scientist, formulated an equation from which intensities of electron waves in an atom can be calculated.
- The Schrödinger wave equation describes the probability of finding the electron at various locations in the atom.

### Probability Clouds and Atomic Orbitals

The densest regions correspond to where the electron's wave intensity is greatest.

The probability cloud is a close approximation to the actual shape of an electron's threedimensional wave.

#### Probability Clouds and Atomic Orbitals

Atomic orbitals:

- Are a volume of space within which an electron may reside.
- Each orbital represents a different region in which an electron of a given energy is most likely to be found.
- They are classified by letters *s*, *p*, *d*, and *f* and come in a variety of shapes.
- Electron energies are quantized, and the sizes of atomic orbitals are quantized.





