

The Legend of the Falling Apple

According to legend, while Isaac Newton was sitting under an apple tree pondering the nature of forces, an apple fell and possibly struck his head. He reasoned that the Moon is falling toward the Earth for the same reason the apple falls-both are pulled by Earth's gravity.

The Fact of the Falling Moon

The Moon falls around the Earth in the sense that it falls beneath the straight line it would follow if no force acted on it.

The Moon maintains a tangential velocity, which ensures a nearly circular motion around and around the Earth rather than into it. This path is similar to the paths of planets around the Sun.

Newton's Law of Universal Gravitation

Newton discovered that gravity is universal
Every mass pulls on
 every other mass.

Copyight © 2007 Peasson Eucacaion, Inc., publishing as Peason Adaison Wesley

Newton's Law of Universal Gravitation

$$
F=G \frac{m_{1} \times m_{2}}{d^{2}}
$$

The greater m_{1} and $m_{2} \Rightarrow$ the greater the
force of attraction between them.
The greater the distance of separation d, the weaker is the force of attraction-weaker as the inverse square of the distance between their centers.

Copyright © 2007 Pearson Education, Inc., publishing as Pearson Addison Westley

The Universal Gravitational Constant, G

G is the proportionality constant in Newton's law of gravitation.
G has the same magnitude as the gravitational force between two 1-kg masses that are 1 meter apart:

$$
6.67 \times 10^{-11} \mathrm{~N} .
$$

So $G=6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}$.

Weight and Weightlessness

Example of weightlessness:
Astronaut in orbit
An astronaut is weightless because he or she is not supported by anything. The body responds as if gravity forces were absent, and this gives the sensation of weightlessness.

Cpyight © 2007 Pearson Education, Inc.. publishing as Pearson Addison Westey

Weight and Weightlessness

Weight
is the force exerted against a supporting floor or weighing scale.

Weightlessness
is a condition wherein a support force is lacking-free fall, for example.

Gravity and Distance:
The Inverse-Square Law
Inverse-square law:
relates the intensity of an effect to the inverse square of the distance from the cause

$$
\text { Intensity } \approx \frac{1}{\text { distance }} \text { 2 }
$$

The greater the distance from Earth, the less the gravitational force on an object. No matter how great the distance, gravity approaches, but never reaches, zero.
Weight and WeightlesSnesS
Weight
is the force exerted against a supporting floor or
weighing scale.
Weightlessness
is a condition wherein a support force is lacking-free
fall, for example.

Center of Gravity

The position of object's center of gravity relative to a base of support determines the object's stability.

Rule for stability:

- If the CG of an object is above or within the area of support, the object is stable.
- If the CG of an object extends outside the area of support, the object is unstable-and it will topple.

Example: Leaning Tower of Pisa

Copyright © 2007 Pearson Education, inc., publishing as Pearson Addison Wesley

Gravity Can Be a Centripetal Force

Centripetal Force

is any force that causes an object to follow a circular path.

Examples:
The Sun pulls its planets in a nearly circular path. It is possible to whirl an empty tin can in a circular path at the end of a string.

To keep the can revolving over your head in a circular path you must keep pulling inward on the string.

Copyight © 2007 Pearson Education, Inc..publishing as Pearson Addison Wesley

Projectile Motion

Projectile
is any object that moves through the air or through space under the influence of gravity.

Curved path of projectile (parabola) Example:
A stone thrown horizontally curves downward due to gravity.

Projectile Altitude and Range

For equal launching speeds, the same range is obtained from two different projection angles-a pair that add up to 90°. Maximum range occurs at 45°.

Example:

The same range occurs for a 75° launch and a 15° launch of the same initial speed.

The Effect of Air Drag on Projectiles

- With air resistance,
both range and altitude are decreased.
- Without air resistance,
the speed lost going up is the same as the speed gained while coming down.

Fast-Moving Projectiles—Satellites

Satellite

is any projectile moving fast enough to fall continually around the Earth.
To become an Earth satellite, the projectile's horizontal velocity must be great enough for its trajectory to match Earth's curvature.

Fast-Moving Projectiles—Satellites

The Earth's curvature drops a vertical distance of 5 meters for each 8000 m tangent to the surface. So to orbit Earth, a projectile must travel 8000 m in the time it takes to fall 5 m .

\qquad
\qquad

Copyright © 2007 Pearson Education, Inc., pubishing as Pearson Addison Wesley

Elliptical Orbits

Speed of a satellite in an elliptical orbit varies:

- Near Earth it initially starts greater than $8 \mathrm{~km} / \mathrm{s}$ and overshoots a circular orbit and travels away from Earth.
- Gravity slows it down until it no longer moves away from Earth.
- Then it falls toward Earth gaining the speed it lost in receding. It follows the same oval-shaped path in a repetitious cycle.

Elliptical Orbits

The escape speed of a body is the initial speed given by an initial thrust, after which there is no force to assist motion.
From Earth's surface, escape speed is $\mathbf{1 1 . 2} \mathbf{~ k m} / \mathbf{s}$.

Astronomical Body	$\begin{gathered} \text { Mass } \\ \text { (in Earth masses) } \end{gathered}$	$\begin{gathered} \text { Radius } \\ \text { (in Earth radii) } \end{gathered}$	Escape Speed (km / s)
Sun	333,000	109	620
Sun (ata distance of			
Jupiter	318.0	11.0	60.2
Satum	95.2	9.2	36.0
Neptune	17.3	3.47	24.9
Urans	14.5	3.7	22.3
Earth	1.00	1.00	11.2
Venus	0.82	${ }^{0.95}$	10.4
Mars	${ }^{0.11}$	${ }_{0}^{0.53}$	5.0
Mercury	0.055	0.38	4.3
Moon	0.0123	0.27	2.4

[^0]
[^0]: Copynght © 2007 Pearson Eucation, Inc., pubishing as Pearson Addison Westey

