

Aristotle on Motion

Aristotle classified motion into two kinds:

- Natural motion motion that is straight up or straight down
- Violent motion imposed motion resulting from an external push or pull

Galileo's Concept of Inertia

Experiment:
Balls rolling down inclined planes and then up others tend to roll back up to their original heights.

Galileo's Concept of Inertia

Experiment:

Balls rolling down or up inclined planes will alter their speeds depending on the direction.

Slope upward-

Galileo's Concept of Inertia

Conclusion:
The tendency of a moving body to keep moving is natural-every material object resists change in its state of motion. This property of things to resist change is called inertia.

Mass—A Measure of Inertia

Weight:
Amount of gravitational pull on an object
Weight and mass are proportional.
Twice the $\mathrm{maSS} \Rightarrow$ twice the Weight
Half the mass \Rightarrow half the weight

Mass—A Measure of Inertia

Mass

- Quantity of matter in an object
- Measure of inertia or sluggishness that an object exhibits in response to any effort made to start it, stop it, or change its state of motion in any way

Mass—A Measure of Inertia

Mass versus volume:

- Mass involves how much matter an object contains
- Volume involves how much space an object occupies

Mass-A Measure of Inertia

The Equilibrium Rule

The equilibrium rule:
"The vector sum of forces acting on a nonaccelerating object or system of objects equals zero.", or the net force on an object is zero.

Mathematical notation: $\Sigma F=0$.

Mass—A Measure of Inertia

Density is the measure of how much mass occupies a given space

Equation for density:

$$
\text { Density }=\frac{\text { mass }}{\text { volume }}
$$

in grams per cubic centimeter ($\mathrm{g} / \mathrm{cm}^{3}$) or kilograms per cubic meter ($\mathrm{kg} / \mathrm{m}^{3}$)

In the illustration below, there are upward and downward forces. What can be said about their sum?

What if this were not true? What would happen?

The Support Force

The force that supports an object on a surface against gravity is called the support force, often called the normal force $\left(\mathrm{F}_{\mathrm{N}}\right)$.

The Force of Friction

Friction -

- the resistive force that opposes the motion or attempted motion of an object through a fluid or past another object with which it is in contact
- always acts in a direction to oppose motion

Speed and Velocity

Speed is described as the distance covered per amount of travel time

Equation for speed:

Speed = distance covered travel time

Equilibrium of Moving Things

An object that moves at constant velocity is in equilibrium.

When two or more forces cancel to zero on a moving object, then the object is in equilibrium.
75-N friction
force

The Force of Friction

Friction -

- between two surfaces, the amount depends on the kinds of material and how much they are pressed together
- due to surface bumps and also to the stickiness of atoms on the surfaces of the two materials

Speed and Velocity

Average speed is the total distance traveled divided by the time of travel

Equation for average speed: Average speed $=$ total distance covered travel time

Instantaneous speed is speed at any instant of time. Speed is a scalar quantity.

Speed and Velocity

Average velocity is the speed of an object combined with a direction of travel. For example, a car can be traveling a speed of 30 mph or a velocity of 30 mph east.

Instantaneous velocity is velocity at any instant of time.

Velocity is a vector quantity.

Acceleration

Acceleration is the rate at which velocity changes with time. The change in velocity may be in magnitude, in direction, or both. $\left(\mathrm{m} / \mathrm{s}^{2}\right)$

Equation for acceleration:

Acceleration

Free fall
When the only force acting on a falling object is gravity, (with negligible air resistance), the object is in a state of free fall.

Acceleration

TABLE 2.2 Free Fall		
Time of Fall (\mathbf{s})	Speed of Fall $(\mathrm{m} / \mathrm{s})$	Distance of Fall (m)
0	0	0
1	10	5
2	20	20
3	30	45
4	40	80
5	50	125
.	.	
.		
t	$10 t$	\vdots

Accelerating objects increase their interval distance with each second also.

2 5 s

Acceleration

Acceleration

Objects thrown up into the air will also experience an acceleration due to gravity. Note what happens to the direction and magnitude of velocity at each point in the journey.

Acceleration

For the illustration below, which ball (A or B) will have the greatest speed at the end of the track?

