

Chapter 29 THE UNIVERSE

Can you see that during a solar eclipse, the darkened daytime sky would show constellation positions as normally seen six months earlier or later?

The Brightness and Colors of Stars

- A star's color indicates its temperature:
- A red star is cooler than a blue star
- · A blue star is almost twice as hot as a red star
- blue light has almost *twice the frequency* of red light, and $\frac{1}{2}$ the wavelength.

The Life Cycles of Stars

White dwarf:

- Cools for eons until it is too cold to emit light
- If part of a binary, pulls matter from its partner, which can lead to a nuclear blast (nova)

Galaxies

- Some galaxies are known as *active galaxies* and are emitting huge amounts of energy.
- Two examples of active galaxies are:
 - Starburst galaxies
 - Galaxies with an active galactic nucleus

Galaxies

 Starburst galaxies form stars at a very fast rate. They result from violent disturbances, such as the collision between two galaxies.

• This image shows the aftermath of the collision of two spiral galaxies. Areas in blue are regions of rapid star formation.

Clusters and Superclusters

• Our Local Group is situated between the Virgo and Eridanus Clusters, which together make up our Local Supercluster.

Clusters and Superclusters • Our Local Supercluster is part of a network of superclusters.

http://scienceblogs.com/startswithabang/upload/2010/07/the_last_great_prediction_of_t/bigbang.jpg

Dark Matter and Energy

- What is ordinary matter?
 - What we think of as ordinary matter is made of protons, neutrons, and electrons that form atoms that combine to make people, planets, stars, and suns.
 - Ordinary matter is composed of the elements listed in the periodic table.

Dark Matter and Energy

- If we can't see or interact with dark matter, how do we know that it exists?
 - Remember how gravity affects the motion of the planets orbiting the Sun: The closer the planet is to the Sun, the more gravitational force it experiences.
 - The greater the force on a planet, the faster that planet orbits the Sun.

Dark Matter and Energy

- We can apply the same principle to galaxies.
 - We should expect that objects closer to the center of a galaxy (which contains most of the ordinary matter) should orbit around the center faster than objects farther from the center.
 - This is not the case!
 - Objects in galaxies orbit at about the same speed no matter what their distance is from the center of the galaxy.

Dark Matter and Energy

- · Galaxy formation:
 - After the Big Bang, ordinary matter as well as dark matter began to clump together due to gravity.
 - When ordinary matter interacts with itself, energy is lost as heat.
 - As ordinary matter loses energy, it clumps together further and becomes concentrated at the center.

The Fate of the Universe

• Two possible scenarios for the fate of the universe are:

Inc. publishing as Pearson

- Heat death
- The Big Rip

