<u>Potential Applications of Gravity and Magnetic Methods</u> <u>in Engineering and Environmental Studies</u> (from Hinze, 1990, Geotechnical and Environmental Geophysics, v.1, p.73-126)

Target	Gravity*	Magnetics*
Mapping subsurface voids	X	Х
Mapping bedrock topography	Х	Х
Mapping steeply dipping geologic contacts	Х	X
Mapping regions of potential stress amplification (e.g.		
plutons and fault zone irregularities)	Х	X
Mapping potential zones of weakness (e.g. paleorifts,	X	X
sutures, and faults)		
Mapping landfills	Х	X
Mapping archeological sites		X
Locating buried well casings		X
Locating buried drums, pipelines, and other		X
ferromagnetic objects		
Locating coal burns		X
Determining density	X	
Mapping groundwater cones of depression	X	
Determining volume of organic fill in lakes	X	
Determining groundwater volume in basins	Х	
Locating underwater ferromagnetic objects		X
Locating sand and gravel deposits that contain heavy		
minerals (including magnetite)		X

*X = major method; x = minor method.

<u>Gravity: Wavelengths and Amplitude Resolution for Typical Geologic Targets</u> (from Yale et al., 1998, *The Leading Edge*, v.17, p.73-76)

Target	Wavelength	Amplitude
Buried cavities, tunnels, tanks	1-10 m	5-100 µGal
Pediment and seismic weathering layer thickness, shallow gas pockets, karst	10-200 m	0.05-0.2 mGal
Shallow salt domes and cap rock	200-1000 m	0.1-0.3 mGal
Anticlines, faults, deep salt dome flanks and overhangs	0.5-4 km	0.2-2.0 mGal
Deep sedimentary basin structure	2-20 km	5 mGal
Sedimentary basin outlines and	10-100 km	10 mGal
boundaries, plate tectonic structures		

Useful Equations for Gravity and Magnetic Fields	<u>L</u>
from Hinze, 1990, Geotechnical and Environmental Geophysics, v.1, p.73-126)	(from Hinze, 19

Source	Gravity	Magnetics
Susceptibility		k (SI units) = $4\pi k$ (cgs units)
magnetic units		1 nanoTesla (nT) = 10^{-5} Oersted
Basic	$g = \frac{G\rho V d}{r^3}$	$T = \frac{kHV}{r^n}, k = k_m x \%$ magnetite
Sphere	$g = \frac{4\pi G\rho R^3}{3d^2} \frac{1}{\left[1 + (x^2/d^2)\right]^{3/2}}$	$T = \frac{8\pi kHR^{3}}{3d^{3}} \frac{\left[1 - \left(x^{2}/2d^{2}\right)\right]}{\left[1 + \left(x^{2}/d^{2}\right)\right]^{5/2}}$
Vertical Cylinder (infinite)	$g = \frac{\pi G \rho R^2}{\left(x^2 + d^2\right)^{1/2}}$	$T = \frac{\pi dk HR^{2}}{(x^{2} + d^{2})^{3/2}}, E >> d$
Horizontal Cylinder (infinite)	$g = \frac{2\pi G\rho dR^2}{\left(x^2 + d^2\right)}$	$T = \frac{2\pi kHR^{2}(d^{2} - x^{2})}{(x^{2} + d^{2})^{2}}$
Narrow Vertical Sheet	$g = \frac{2 G \rho t \ln \left(x^{2} + d_{2}^{2}\right)^{1/2}}{\ln \left(x^{2} + d_{1}^{2}\right)^{1/2}}$	$T = 2kHt \left[\frac{d_1}{\left(x^2 + d_1^2\right)} - \frac{d_2}{\left(x^2 + d_2^2\right)} \right]$
Vertical Fault	$g = 2 G \rho t \theta$	$T = \frac{2 k h t x}{\left(x^2 + d^2\right)}$
Finite Slab	$g = 2 G \rho t \Big(\theta_1 - \theta_2 \Big)$	$\mathbf{T} = 2 \mathbf{k} \mathbf{H} \Big(\boldsymbol{\theta}_1 - \boldsymbol{\theta}_2 \Big), \mathbf{E} >> \mathbf{d}$

Notes: g is the gravity anomaly in Gals due to a density contrast (ρ) in g/cm³ (kg/m³); T is the magnetic anomaly in Oersteds (Teslas) in a vertical polarizing magnetic field caused by a magnetic susceptibility contrast (k) in cgs units; k_m is the volume susceptibility of magnetite, 0.25 cgs units (3.14 SI); H is the vertical magnetic field in Oersteds (Teslas); G in the gravitational constant, 6.672 x 10⁻⁸ dyne-cm²/g² (6.672 x 10⁻¹¹ N-m²/kg²); V is volume; r is the distance between the observation point and the center (sphere) or axis (cylinder) or centerline; x is the horizontal distance from the observation point to the center (sphere) or axis (cylinder) or centerline (sheet) or edge (fault); d is the depth to the center (sphere) or axis (cylinder) or top (d₁) or bottom (d₂) of sheet or centerline (fault); R is radius; E is depth extent; θ is the angle from the horizontal (θ_1 to top; θ_2 to bottom). All distances in centimeters (meters). Units in parentheses are SI.