Chapter 10
The Origin of the Solar System

Guidepost

As you explore the origins and the materials that make up the solar system, you will discover the answers to several important questions:

* What are the observed properties of the solar system?
* What is the theory for the origin of the solar system that explains the observed properties?
* How did Earth and the other planets form?
* What do astronomers know about other extrasolar planets orbiting other stars?

In this and the following six chapters, we will explore in more detail the planets and other objects that make up our solar system, our home in the universe.

The Great Chain of Origins (2)

The initial conversion of energy to matter created protons, neutrons and electrons in just the first few minutes.

- Not long afterwards, simple atoms - H and He - began to form.

- A few million years later, matter collected to form galaxies with billions of stars. Nuclear fusion in these stars generated C, N, O, Ca and other atoms.

A supernova explosion in our part of the Milky Way produced larger atoms, such as $\mathrm{Fe}, \mathrm{Ag}, \mathrm{Au}$ and U . The cloud of gas and dust later became our solar system.

Our Solar System

Characteristic Properties of the Solar System

1. Disk shape - orbits nearly in the same plane, and a common direction of rotation and revolution
2. Two planetary types (Jovian and Terrestrial)
3. Planetary rings and large satellite systems for Jovian planets, but not for Terrestrial planets
4. Space debris, with asteroids most like inner planets
5. Common age of ~ 4.6 billion years measured or inferred

The Jovian Problem

Two problems for the theory of planet formation:

1) Observations of extrasolar planets indicate that Jovian planets are common.
2) Protoplanetary disks tend to be evaporated quickly (typically within $\sim 100,000$ years) by the radiation of nearby massive stars.
\rightarrow Too short for Jovian planets to grow!
Solution:
Computer simulations show that Jovian planets can grow by direct gas accretion without forming rocky planetesimals.

	Indirect Detection of Extrasolar Planets
	Other methods of detection currently include: > Transit Method (shadow of planet dims star) > Transit Timing Variation (TTV) (transits vary due to gravity of other planets in systems) > Gravitational Microlensing (General Relativity) > Pulsar Timing Anomalies (caused by planets orbiting pulsar) A total of 1901 such planets (including 436 multiple planetary systems) have been identified as of October 15, 2015.

