

Galileo and Motion (5)

Discovery:
In the absence of friction, no force is necessary to keep a horizontally moving object moving.

Conclusion:
The tendency of a moving body to keep moving is natural-every material object resists change in its state of motion.
This property of things to resist change is called inertia.

Tides and Tidal Forces (12)

Other factors...

Other factors contribute to the complexities of the tides. These include the following:
> Tilt of the Moon's orbit (5°)
> Tidal Day (~ 24 hrs 50 m) vs. Solar Day
> Addition of Sun's gravity makes the bulge either lead the Moon or lag behind it. The tidal bulge will lead the Moon between New and $1^{\text {st }}$ Quarter phases and Full and $3^{\text {rd }}$ Quarter phases; it will lag behind the Moon between $1^{\text {st }}$ Quarter and Full Moon, and $3^{\text {rd }}$ Quarter and New Moon (by up to 2 hours).

Other effects of the tides:

> The effect of the Earth's gravity on the Moon has caused the Moon's rotation rate to slow until it is equal to its orbital rate, therefore the same face always looks at us.
> Our days are getting longer due to tidal friction at a rate of 0.0015 seconds per century.
> Tidal forces also cause the Moon's orbit to recede from the Earth at a rate of 3.8 cm per year.

Einstein and Relativity

Albert Einstein (1879-1955) was one of the greatest scientists of all time. His thinking about motion and gravity allowed for a revision of the nature of Newton's ideas on gravity called Special and General Relativity.

Einstein and Relativity (3)

Observer A is on the train, while Observer B is on the platform. A ball is dropped on the train. To Observer A , it appears to fall straight downward. To Observer B, however, the ball looks like it follows a parabolic path - just as if someone had thrown the ball. In other words, the result is relative to your frame of reference - where you make your observations from.

